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Abstract

The nonlinear integral equationP(x) =
∫ β

α dyw(y)P(y)P(x+ y) is investigated. It is shown
that for a given functionw(x) the equation admits an infinite set of polynomial solutions
Pn(x). For polynomial solutions, this nonlinear integral equation reduces to a finite set of
coupled linear algebraic equations for the coefficients of the polynomials. Interestingly, the
set of polynomial solutions is orthogonal with respect to the measurexw(x). The nonlinear
integral equation can be used to specify all orthogonal polynomials in a simple and compact
way. This integral equation provides a natural vehicle for extending the theory of orthogonal
polynomials into the complex domain. Generalizations of the integral equation are discussed.
Finally, it is observed that since the integral equation is independent of the degree of the
polynomials it may possibly be a useful tool in determining and studying the asymptotic
behaviors of polynomials.

1 Introduction

The work reported here is a review (in Secs. 1 and 2) of the research reported in Ref. [1], where it
is shown that any class of orthogonal polynomials can be constructed by using a nonlinear integral
equation. Section 3 describes new work in which we show how touse this integral equation to
examine the asymptotic properties of the polynomials.

Let us begin by recalling that there are many ways to specify aset of orthogonal polynomials.
We mention two completely general methods below:

•We can specify the domain(α ,β ) and the measureg(x) with respect to which the polynomials
are orthogonal. We then can use the well known Gram-Schmidt orthogonalization procedure to
determine the polynomials sequentially. For example, on the domain(−1,1) and for the measure
g(x) = (1−x2)−1/2, the Gram-Schmidt procedure yields the Chebyshev polynomialsTn(x):

T0(x) = 1,
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T1(x) = x,

T2(x) = 2x2−1,

T3(x) = 4x3−3x,

and so on.
• We can use a recursion relation. For example, if we take

Tn+1(x) = 2xTn(x)−Tn−1(x)

along with the initial conditionsT0(x) = 1 andT1(x) = x, we again obtain the Chebyshev polyno-
mialsTn(x).

Other methods to construct or specify a set of orthogonal polynomials can also be used. The
following two methods do not have a general applicability:

• The classical orthogonal polynomials [2, 3, 4] obey a differential-equation eigenvalue prob-
lem (a Sturm-Liouville problem). For example, the differential equation

(1−x2)y′′(x)−xy′(x)+n2y(x) = 0

along with appropriate boundary conditions atx = −1 andx = 1 leads to the Chebyshev polyno-
mialsTn(x) once again. Of course, it is unusual to find that a set of polynomials obey a differential
equation. For example, the Krawtchouk, Charlier, Meixner,and Hahn polynomials satisfy differ-
ence equations but not differential equations [5].

• We can introduce a generating functionG(x, t) for polynomials. If the generating function is
expanded as a Taylor series in powers oft, the coefficients are polynomials inx. For example, the
generating function

G(x, t) =
1−xt

1−2xt+ t2 =
∞

∑
0

Tn(x)t
n

reproduces the Chebyshev polynomialsTn(x). Of course, this method is again not general be-
cause there is no procedure for predicting when a given generating function will in fact produce
orthogonal polynomials.

The new method described in this paper for constructing orthogonal polynomials is general and
makes use of the following nonlinear integral equation:

P(x) =
∫ β

α
dyw(y)P(y)P(x+y), (1.1)

where the functionw(x) satisfies the constraint

∫ β

α
dxw(x) = 1. (1.2)

We find that thenth degree polynomial solutionsPn(x) to this integral equation are orthogonal
with respect to the measure

g(x) = xw(x). (1.3)
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The proof of orthogonality following (1.8) requires thatw(x) satisfy some rather weak conditions:
The moments ofw(x) must all exist and the determinant of the matrixBn in (1.9) must not vanish.
Note that it is sufficient thatxw(x) be integrable and positive almost everywhere.

To find the polynomial solutions to this integral equation, we simply substitute a polynomial of
degreen,

Pn(x) =
n

∑
k=0

an,k xk, (1.4)

in which the coefficientsan,k are arbitrary, into the integral equation (1.1). We then solve the
resulting algebraic equations for the coefficients. Note that the polynomial of degreen= 0,P0(x) =
1, already solves the integral equation by virtue of the constraint (1.2).

To demonstrate the procedure we introduce the following notation:

〈 f 〉 ≡
∫ β

α
dyw(y) f (y). (1.5)

Let us now see how to solve for the orthogonal polynomials forsome low-degree cases.
Example:SubstituteP1(x), whereP1(x) = a1,0 +a1,1x, into the integral equation (1.1). We obtain
the equation

a1,0 +a1,1x = 〈P1(y) [a1,0 +a1,1y+a1,1x]〉.

Then, matching coefficients of powers ofx gives a system of two linear equations for the coeffi-
cientsP1:

〈P1(x)〉 = 1,

〈xP1(x)〉 = 0. (1.6)

Example: SubstituteP2(x), whereP2(x) = a2,0 + a2,1x+ a2,2x2, into the integral equation (1.1).
The result is

a2,0 +a2,1x+a2,2x2 = 〈P2(y)
[

a2,0 +a2,1(x+y)+a2,2(x
2 +2xy+y2)

]

〉.

Matching coefficients of powers ofx gives a system of three linear equations for the coefficients
of P2:

〈P2(x)〉 = 1,

〈xP2(x)〉 = 0,

〈x2P2(x)〉 = 0. (1.7)

The general pattern for the case ofnth degree polynomials is now obvious. If we substitute
Pn(x) in (1.4) into the integral equation (1.1) and match coefficients of powers ofx, we obtain the
following system ofn+1 linear equations:

〈xkPn(x)〉 = δk,0 (k = 0,1, . . . ,n). (1.8)

Equations (1.6) and (1.7) are special cases of this equationfor n = 1 andn = 2.
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Cramer’s rule tells us that the linear inhomogeneous algebraic system (1.8) has a unique solu-
tion. Thus, while the nonlinear integral equation (1.1) admits an infinite set of polynomial solu-
tions, the set of polynomials is unique. Thus, for eachw(x) there is only one polynomial solution
of degreen.

The system of algebraic equations (1.8) can be used to construct a quick proof of orthogonality:

〈xPnPm〉 =
m

∑
k=0

am,k〈xk+1 Pn(x)〉

=
m+1

∑
k=1

am,k−1〈xk Pn(x)〉

= 0,

where we have used (1.8) explicitly fork = 0,1,2, . . . ,n−1.
Let us now display the explicit form of the polynomial solutionsPn(x). We define the moment

notationmn ≡ 〈xn〉. Then, for alln we have

Pn(x) =
detAn

detBn
, (1.9)

where the matricesAn andBn are given by

An =











1 x · · · xn

m1 m2 · · · mn+1
...

...
.. .

...
mn mm+1 · · · m2n











(1.10)

and

Bn =











m0 m1 · · · mn

m1 m2 · · · mn+1
...

...
.. .

...
mn mm+1 · · · m2n











. (1.11)

The first three polynomials are given explicitly as

P0(x) = 1,

P1(x) =
m2−xm1

m2−m2
1

,

P2(x) =
(m2m4−m2

3)+ (m2m3−m1m4)x+(m1m3−m2
2)x

2

m4(m2−m2
1)−m2

3+2m1m2m3−m3
2

.

Note that the polynomial formula in (1.9) is precisely what one obtains if one is given the
measureg(x) and one then uses the Gram-Schmidt orthogonalization procedure. This shows that
the nonlinear integral equation (1.1) is equivalent to the Gram-Schmidt procedure. The noteworthy
feature of the nonlinear integral equation is that it is independent of the degreen of the polynomial;
all polynomials, regardless of their degree, satisfy the integral equation. Technically speaking, the
Gram-Schmidt procedure is an iterative technique in which one calculates the polynomials in
order of increasing degreeP0, P1, P2, and so on, where each new polynomial is orthogonal to all
previously found polynomials. When one uses the nonlinear integral equation (1.1), one simply
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specifies the degree of the required polynomial and then determines it directly without knowing
the other polynomials. However, since the final formula for the polynomials is unique, one must
regard the integral equation as being equivalent to the Gram-Schmidt procedure.

Example:To illustrate the construction of a set of orthogonal polynomials, let us chooseα = 0
andβ = 1 and take the functionw(x) to have the general formxa+xb. Then the condition in (1.2)
implies thatab= 1. For these choices we obtain a complicated-looking one-parameter family of
orthogonal polynomials whose coefficients are palindromic:

P0(x) = 1,

P1(x) =
(a+2)(2a+1)

a6 +10a5 +20a4 +10a3 +20a2 +10a+1
[2a4 +17a3

+34a2 +17a+2−x(3a4 +22a3 +46a2 +22a+3)].

An interesting question to ask is, What happens ifw(x) = g(x)/x is singular at the origin
x = 0? This at first appears to be a serious problem, but in fact thesolution is elementary. We
simply choose the path of integration in the integral equation (1.1) to avoid the origin!

Example:Consider the case of Legendre polynomials. For these polynomialsα = −1, β = 1, and
g(x) is a constant. There are infinitely many topologically distinct integration paths connecting
−1 to 1, where the paths are characterized by their winding numbers. For definiteness, choose a
path that runs from−1 to 1 in the positive (counterclockwise) direction and doesnot encircle the
origin. On this path

∫

dx/x = iπ. Thus, to maintain the normalization condition
∫ β

α dxw(x) = 1
we usew(x) = 1/(iπx). The momentsmn = 〈xn〉 arem0 = 1, m1 = 2/(iπ), m2 = 0, m3 = 2/(3iπ).
The first four polynomials are

P0(x) = 1,

P1(x) =
iπ
2

x,

P2(x) = 1−3x2,

P3(x) =
3iπ
8

(3x−5x3).

These are precisely the Legendre polynomials with an unusual overall multiplicative normalization
factor — every other polynomial contains a multiplicative factor ofi. Note that these polynomials
are symmetric under the combined reflections

x → −x,

i → −i. (1.12)

This symmetry has been heavily studied by mathematical physicists and is known asPT sym-
metry [6, 7]. Of course, the notion of polynomials on complexcontours is not new and has been
examined in the past by many mathematicians; see, for example, Refs. [8, 9].

2 Other nonlinear integral equations having polynomial solutions

There are many other kinds of nonlinear integral equations having polynomial solutions. For
example, one can have amultiplicative rather than an additive argument; that is, one can replace
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P(x+y) in the nonlinear integral equation (1.1) byP(xy):

P(x) =
∫ β

α
dyw(y)P(y)P(xy). (2.1)

If we now substitutePn(x) = ∑n
k=0 an,k xk, we get

an,k〈xkPn(x)〉 = an,k (k = 0,1, . . . ,n).

Unlike the previous case, these equations arequadraticand there are now 2n−1 solutions because
each coefficientan,k can be either zero or nonzero fork = 0, . . . ,n−1.

We find that for one special class of solutions all of the coefficients are nonzero and the poly-
nomials are orthogonal with respect to the measure

g(x) = (1−x)w(x).

Here are some additional examples of nonlinear integral equations that have a particularly rich
and interesting structure:

Example:ReplaceP(x+y) in the nonlinear integral equation (1.1) byP(x+a+by):

P(x) =
∫ β

α
dyw(y)P(y)P(x+a+by).

Example:ReplaceP(x+ y) in the nonlinear integral equation (1.1) byP[x+ f (y)], where f is an
arbitrary function:

P(x) =

∫ β

α
dyw(y)P(y)P[x+ f (y)].

Example:ReplaceP(y) in (1.1) by f [P(y)], where f is an arbitrary function:

P(x) =

∫ β

α
dyw(y) f [P(y)]P(x+y).

3 Application: asymptotic behavior of polynomials

Because the nonlinear integral equation (1.1) does not contain the degree of the polynomial solu-
tions explicitly, it is easy to use this integral equation tostudy the asymptotic behavior of classes of
polynomials. We illustrate this by deriving asymptotic properties of some classical polynomials.

Example:The Laguerre polynomialsLγ
n(x) are orthogonal on interval(0,∞) with respect to mea-

sure

g(x) = xγ e−x/Γ(γ). (3.1)

Thus, from (1.1) we know that thenth Laguerre polynomial satisfies the following nonlinear inte-
gral equation:

Lγ
n(x) =

1
Γ(γ)

∫ ∞

0
dyyγ−1e−yLγ

n(y)L
γ
n(x+y). (3.2)
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It is well known that the asymptotic behavior of the Laguerrepolynomials for large degree is
given by [10]

lim
n→∞

n−γLn(x/n) = x−γ/2Jγ(2
√

x). (3.3)

It is easy to verify this asymptotic behavior directly by using the integral equation (3.2). We
simply scale all the arguments in (3.2) byn and multiply both sides byn−γ :

1
nγ Lγ

n

(x
n

)

=
1

Γ(γ)

∫ ∞

0
dyyγ−1e−y/n 1

nγ Lγ
n

(y
n

) 1
nγ Lγ

n

(

x+y
n

)

.

Next, we take the limitn → ∞ and substitute the limiting behavior of the Laguerre polynomial
given in (3.3). We obtain the following integral identity involving Bessel functions:

x−γ/2Jγ(2
√

x) =
1

Γ(γ)

∫ ∞

0
dyyγ/2−1Jγ(2

√
y)(x+y)−γ/2Jγ(2

√
x+y).

This identity transforms to a standard identity that can be found in Gradsteyn and Ryzhik [10]:

2γ Jγ(z)

2zγ =
1

Γ(γ)

∫ ∞

0

dw
w

wγJγ (w)
Jγ(

√
w2+z2)

(√
w2+z2

)γ . (3.4)

Here is a second example involving Jacobi polynomials:

Example:The Jacobi polynomialsPα ,β
n (x) are orthogonal on the interval(−1,1) with respect to

measure

g(x) =
(1−x)α(1+x)β

2α+β B(α ,β +1)
. (3.5)

Thenth Jacobi polynomial satisfies themultiplicative integral equation (2.1):

Pα ,β
n (x) =

2−α−β

B(α ,β +n+1)

∫ 1

−1
dy(1−y)α−1(1+y)β Pα ,β

n (y)Pα ,β
n (xy). (3.6)

It is known that the asymptotic behavior of the Jacobi polynomials for largeβ is given by [10]

lim
β→∞

Pα ,β
n

(

1− 2x
β

)

= Lα
n (x). (3.7)

Let us perform the asymptotic limit of the integral equation(3.6). To do so, we make the
change of variablesx→ 1−2x/β andy→ 1−2y/β :

Pα ,β
n

(

1− 2x
β

)

= β−α Γ(α + β +n+1)

Γ(α)Γ(β +n+1)

×
∫ β/2

−β/2
dyyα−1

(

1− y
β

)β
Pα ,β

n

(

1− 2x
β

)

Pα ,β
n

[(

1− 2x
β

)(

1− 2y
β

)]

.

Next, we take the limitβ → ∞:

Lα
n (x) =

1
Γ(α)

∫ ∞

0
dyyα−1e−yLα

n (y)Lα
n (x+y). (3.8)
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Observe that this is precisely the nonlinear integral equation (3.2) satisfied by the Laguerre poly-
nomials!

These examples show that the nonlinear integral equation (1.1) is extremely useful in elucidat-
ing the properties of known orthogonal polynomials. We hopethat it can also be used to discover
new and interesting classes of orthogonal polynomials.
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